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A tale of two connectivities:
intra- and inter-subject
functional connectivity jointly
enable better prediction of
social abilities
Hua Xie* and Elizabeth Redcay

Department of Psychology, University of Maryland, College Park, College Park, MD, United States

Naturalistic functional magnetic resonance imaging (fMRI) paradigms, such

as movie viewing, are attracting increased attention, given their ability to

mimic the real-world cognitive demands on attention and multimodal sensory

integration. Moreover, naturalistic paradigms allow for characterizing brain

network responses associated with dynamic social cognition in a model-free

manner using inter-subject functional connectivity (ISFC). While intra-subject

functional connectivity (FC) characterizes the individual’s brain functional

architecture, ISFC characterizes the neural coupling driven by time-locked

extrinsic dynamic stimuli across individuals. Here, we hypothesized that ISFC

and FC provide distinct and complementary information about individual

differences in social cognition. To test this hypothesis, we examined a public

movie-viewing fMRI dataset with 32 healthy adults and 90 typically developing

children. Building three partial least squares regression (PLS) models to predict

social abilities using FC and/or ISFC, we compared predictive performance

to determine whether combining two connectivity measures could improve

the prediction accuracy of individuals’ social-cognitive abilities measured by

a Theory of Mind (ToM) assessment. Our results indicated that the joint

model (ISFC + FC) yielded the highest predictive accuracy and significantly

predicted individuals’ social cognitive abilities (rho = 0.34, p < 0.001). We

also confirmed that the improved accuracy was not due to the increased

feature dimensionality. In conclusion, we demonstrated that intra-/inter-

subject connectivity encodes unique information about social abilities, and

a joint investigation could help us gain a more complete understanding of the

complex processes supporting social cognition.
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Introduction

Humans are inherently social beings capable of drawing
inferences about other people’s unobservable beliefs and
intentions to navigate their social worlds. Using a suite of
carefully designed cognitive tasks or resting-state paradigms,
traditional functional magnetic resonance imaging (fMRI)
studies have consistently identified a set of functional networks,
termed the social brain, that supports this ability to perceive,
understand, and react to the social world around us (Gallagher
and Frith, 2003; Gobbini et al., 2007; Mitchell, 2008; Alcalá-
López et al., 2018). While much of this work relies on
artificial contexts, more recent novel paradigm-free functional
neuroimaging such as naturalistic fMRI provides a mechanism
to examine how the social brain may respond in complex,
dynamic, real-world situations. With dynamic and rich stimuli
such as movies, stories, games, and virtual reality, naturalistic
paradigms more closely mimic real-world demands on attention
and multimodal sensory integration than the abstract and
restricted stimuli employed in conventional fMRI paradigms,
allowing for researchers to study humans’ highly interactive
socio-cognitive processes “in the wild” (Finn et al., 2018,
2020; Razi et al., 2018; Richardson et al., 2018; Redcay
and Moraczewski, 2020). In addition to its higher ecological
validity, naturalistic fMRI also enables examining multiple
neural measures (e.g., intra- and inter-subject neural coupling)
to probe the mechanisms underlying the fleeting socio-cognitive
information processing (Sonkusare et al., 2019). Despite the
recent progress made, we argue that a gap of knowledge
still exists since most of the previous naturalistic studies
have looked at neural coupling measures in isolation (c.f.,
Simony et al., 2016; Kim et al., 2018; Lynch et al., 2018;
Demirtaş et al., 2019), which begs the question of whether
we can benefit from jointly studying the two neural coupling
measures.

One such neural measure is intra-subject neural coupling,
or functional connectivity (FC), computed as the temporal
correlation of time-series across different brain regions within
an individual. Intra-subject neural coupling is commonly
examined through resting-state FC (RSFC), which measures the
intrinsic functional network architecture driven by spontaneous
brain activities (Fox et al., 2005). Task-evoked FC, however,
reflects brain network architecture patterns associated with
a cognitive state, driven by a mixture of spontaneous
and task-evoked brain activities (Cole et al., 2014). This
task-evoked FC during movie viewing has shown great
promises in studying individual differences as naturalistic
paradigms may serve as an “amplifier” tapping into specific
socio-cognitive domains, consistently outperforming RSFC
(Vanderwal et al., 2017; Finn et al., 2020; Finn and Bandettini,
2021). For example, movie-viewing FC has led to more accurate
predictions of phenotypes in the cognition and emotion domain
(Finn and Bandettini, 2021).

Another neural measure is inter-subject neural coupling.
Unique to naturalistic paradigms, inter-subject neural coupling
characterizes brain responses associated with dynamic social
cognition in a model-free manner (Nummenmaa et al.,
2018), namely inter-subject correlation (ISC) and inter-subject
functional connectivity (ISFC). Unlike the intra-subject FC, ISC
and ISFC measure the neural coupling across individuals. ISC
identifies the shared activation patterns of a given brain region
across subjects (Hasson et al., 2004), and ISFC further delineates
common functional connectivity patterns driven by the extrinsic
time-locked dynamic stimuli (Simony et al., 2016). The shared
activity and connectivity patterns across individuals reflect the
shared understanding of the narratives (Nguyen et al., 2019),
differ based on clinical diagnosis, e.g., autism (Salmi et al., 2013;
Bolton et al., 2018) and attention-deficit/hyperactivity disorder
(Salmi et al., 2020), are associated with collaboration outcomes
(Xie et al., 2020), personality traits (Finn et al., 2018) and brain
functional specialization in childhood (Moraczewski et al., 2018;
Richardson, 2019).

Despite both intra- and inter-subject neural coupling
showing great promise in furthering our understanding of
individual differences in the neural underpinnings of social
cognition, only a handful of studies have systematically
evaluated two types of neural coupling measures together
(Simony et al., 2016; Kim et al., 2018; Lynch et al., 2018;
Demirtaş et al., 2019). We argue that a joint investigation of
both neural coupling measures is needed because each measure
may provide unique information about brain functions. Those
studies that did examine both measures fell short of addressing
the issue as they mainly focused on comparing ISFC and
FC patterns. For instance, Lynch and colleagues found that
ISFC patterns could not fully explain the FC changes during
movie viewing (Lynch et al., 2018). Similarly, Demirtaş and
colleagues confirmed that while there was overlap between the
two neural coupling patterns, increased coupling within frontal
brain regions and reduced coupling between frontal-parietal
brain regions were observed in intra-subject FC during movie
viewing (Demirtaş et al., 2019). Moreover, recent evidence has
suggested that task-evoked FC modulation only accounts for
a relatively small portion of individuals’ connectivity patterns
during tasks, indicating that FC measured during tasks may
still primarily reflect brains’ baseline functional architecture,
i.e., the FC fingerprint (Gratton et al., 2018; Xie et al., 2018a).
In another study comparing two neural patterns, Simony and
colleagues demonstrated the greater sensitivity of ISFC than
standard intra-subject FC directly measured during movie
viewing in detecting stimulus-induced connectivity patterns
(Simony et al., 2016).

Taken together, while the two neural coupling measures
are clearly distinct from one another in some ways, there is
a gap in our knowledge concerning whether the information
encoded in these two connectivity patterns is complementary
or redundant. To answer our question, we used an open-access
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movie-viewing fMRI dataset containing typically developing
children and healthy adults and built a partial least square
(PLS; Krishnan et al., 2011) regression model to predict
children’s socio-cognitive abilities using intra- and/or inter-
subject connectivity (the latter was computed using adults’
responses as the reference). Here, we focused on the social
brain network (Alcalá-López et al., 2018), which undergoes
rapid functional specialization throughout childhood while
children advance in their social-cognitive abilities (Gweon
et al., 2012; Gweon and Saxe, 2013; Richardson et al., 2018).
We postulated that if both connectivity measures provided
complementary information about individuals’ social-cognitive
abilities, the joint model with both connectivity measures would
offer the highest predictive performance. We also conducted a
confirmatory analysis to verify previous studies’ observations
on the similarity between ISFC and FC patterns (Simony et al.,
2016; Kim et al., 2018; Lynch et al., 2018; Demirtaş et al., 2019)
and carried out an additional exploratory analysis to assess the
neurobiological significance of such similarity.

Materials and methods

Participants

An open-access dataset was used in this study1, which
contains a large sample of children (n = 122, 3.5–12 years
old, 64 females, nine left-handed), and adults (n = 33, 18–
39 years old, 20 females). No participants had any known
cognitive or neural disorders. All adult participants and the
parents/guardians of the child participants gave written consent.
All protocols were approved by the Committee on the Use
of Humans as Experimental Subjects at the Massachusetts
Institute of Technology.

Movie task and behavioral battery

Participants underwent fMRI scans while watching a short
silent version of “Partly Cloudy,” a 5.6-min animated movie with
plots eliciting frequent inferences of characters’ mental states
(beliefs, desires, emotions) and bodily sensations (particularly
pain). The movie began after 10 s of a black screen and 10 s
of opening credits. After fMRI scans, all children completed
a socio-cognitive behavioral battery measuring theory of mind
(ToM) abilities (Gweon et al., 2012). The custom-made 24-
item ToM battery (available at https://osf.io/G5ZPV/) involved
listening to an experimenter tell a story and answering
prediction and explanation questions that required reasoning
about characters’ mental states. The questions included varied

1 https://www.openfmri.org/dataset/ds000228/

aspects of ToM abilities including diverse desires and beliefs,
false belief, emotion, moral judgment, and interpretation
(Gweon et al., 2012). The ToM score used in the analysis
corresponded to the proportion of questions answered correctly.

Image acquisition and preprocessing

Whole-brain structural and fMRI data were acquired on
a 3-Tesla Siemens Tim Trio scanner at the Massachusetts
Institute of Technology. All participants were scanned using
the standard Siemens 32-channel head coil except for those
under age five, who used custom 32-channel phased-array
head coils made for younger children. T1-weighted structural
images were collected in 176 interleaved sagittal slices with
1 mm isotropic voxels (Adults: FOV = 256 mm; children:
FOV = 192 mm). Functional data were collected with a gradient-
echo EPI sequence (#slices = 32; TR = 2 s, TE = 30 ms,
flip angle = 90◦). The details of scanning protocols can be
found in Richardson et al. (2018).

We used the data preprocessed by the original authors
(Richardson et al., 2018). Specifically, all functional images were
first registered to the Montreal Neurological Institute (MNI)
template, and registration of each individual’s brain to the MNI
template was visually inspected. The registered data were then
smoothed using a 5 mm Gaussian kernel. The Artifact Detection
Tools2 were used to detect timepoints with more than 2 mm
framewise displacement (FD) to the previous time point or
with a fluctuation in the global signal that exceeded a threshold
of three standard deviations from the mean global signal.
Additionally, we applied temporal interpolation on artifactual
timepoints and regressed out the first five principal components
using CompCor (Behzadi et al., 2007). The residual time
courses were then simultaneously band-pass filtered between
0.008–0.15 Hz and detrended with the first- and second-order
polynomials using 3dTproject. We also excluded the volumes
corresponding to the opening credits (first 10 TRs). We adopted
a stringent exclusion criterion and removed participants with a
mean FD greater than 0.5 mm, leaving 90 children and 32 adults
for further analysis. We performed scrubbing by removing TRs
with FD greater than 1 mm.

Intra- and inter-subject functional
connectivity

Following preprocessing, we extracted the ROI timeseries
from the denoised data using the social brain atlas (Alcalá-López
et al., 2018) containing 36 regions of interest (ROIs). The social
brain atlas, developed using meta-analyses of social and affective

2 https://www.nitrc.org/projects/artifact_detect/
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abilities, consists of key regions responsible for social cognition,
such as the amygdala, precuneus, medial prefrontal cortex
(MPFC), and temporoparietal junction (TPJ), among many
other regions responsible for social and affective information
processing. The ROI masks were dilated by one voxel along each
direction, and then masked by a binary group mask, resulting in
4 ROIs (bilateral temporal pole and cerebellum) being dropped
due to little spatial coverage (fewer than five voxels). Next, we
extracted the mean timeseries from each ROI mask. As shown
in Figure 1, we computed the intra-subject FC by correlating
the timeseries using Pearson correlation. For the inter-subject
connectivity, Pearson correlation was computed across different
individuals (i.e., child-to-adult) within a given ROI (ISC) and
across two ROIs (ISFC). More specifically, we used the adults’
timeseries as a reference, and we correlated the children’s
timeseries with those of the adults. We chose adults as the
reference group, given the previous evidence showing stronger
and more coherent neural coupling and activation patterns in
adults than children (Cantlon and Li, 2013; Moraczewski et al.,
2018). We averaged upper- and lower-diagonal ISFC values to
obtain symmetric ISFC matrices. Both connectivity measures
were then Fisher-transformed and normalized to have zero
mean and unit variance. Since ISC corresponds to the diagonal
terms of the ISFC matrix, hereinafter, we will use ISFC to refer
to both ISC and ISFC.

Building prediction model using partial
least square regression

PLS regression is a statistical method that identifies a linear
relationship between explanatory variables (X, connectivity) and
response (Y, ToM scores). Briefly, PLS regression (Wold et al.,
1983) seeks to optimize the covariance between the response

(Y ∈ Rn×q) and explanatory variables (X ∈ Rn×p) by finding
latent components T ∈ Rn×k for ill-posed problems (n < p,
fewer samples than explanatory variables). PLS regression aims
to find some lower-dimensional latent components T ∈ Rn×k, to
be regressed on Y , which can be formulated as follows:

X = TPT + E,

Y = TQT
+ F, (1)

where P ∈ Rp×k and Q ∈ Rq×k are loading matrices (in PLS
regression, the loadings are not orthogonal), E and F are random
errors following independent and identical normal distribution.

PLS regression is closely related to principal components
regression, for which the latent components are simply derived
by performing principal component analysis on X itself. By
contrast, PLS regression uses both X and Y to construct latent
components T as a linear transformation of X:

T = XW, (2)

where W ∈ Rp×q is a matrix of weights.
In our case of a univariate response (q = 1), PLS regression

iteratively maximizes the squared sample covariance between Y
and the latent components under the condition that the latent
components are mutually empirically uncorrelated and the
columns of W are of unit length. Formally, to find the ithcolumn
of W, PLS regression solves the following optimization question:

wi = argmax
w

wTXTYYTXw,

subject to wT
i wi = 1 and tTi tj = wT

i X
TXwj = 0, (3)

FIGURE 1

A graphical depiction of intra-subject functional connectivity (FC) and inter-subject ISFC between two ROIs. S, task-evoked brain activity; I,
intrinsic brain activity; N, noise. Left, FC is characterized as the neural coupling within a subject, and the RSFC is measured in the absence of the
task-evoked signal (S). Right: ISFC measures brain synchronization across subjects. Only the neural coupling driven by the task-evoked brain
activities is preserved, as the intrinsic brain activity and noise are uncorrelated across individuals. The ISC corresponds to the diagonal terms of
ISFC. Figure adapted from Simony et al. (2016).
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where i = 1, . . . , k and j = 1, . . . , i− 1. Here, X and Y have
mean-centered columns, and the maximum number of latent
components is min(n− 1, p).

Once obtaining W, we can then plug it into the Equation 1
and solve Q using ordinary least squares:

QT
= (TTT)−1TTY. (4)

Finally, we can find the solution to the regression model Ŷ =
TQT
= XWQT

= XβPLS by combining Equations 1, 4:

β̂PLS =WQT
=W(TTT)−1TTY. (5)

The beta weights β̂PLS ∈ Rn×K are equivalent to the
regression weights of multiple regression (although the problem
at hand cannot be readily solved using OLS given n < p).

PLS regression is well-suited for questions where the
dimensionality of independent variables (#connectivity) is much
higher than the number of observations (#participants) and has
been previously used in many associating brain patterns with
behavior (Yoo et al., 2017; Ching Fong et al., 2018).

Here, we built three models, namely FC, ISFC, and
a joint model (ISFC + FC), to predict the ToM scores
after controlling for age (linear and quadratic effects),
gender, and handedness. Ten-fold cross-validation was
used to determine the optimal dimensionality of the latent
components, and the cross-validation was repeated 100
times to minimize the influence of sampling variability.
The model performance was evaluated by the mean
absolute error (MAE) and Spearman correlation between
the true and predicted ToM scores. To evaluate prediction
performance for the chosen analyses, we ran 50,000
permutation tests to derive empirical null distributions of
ToM prediction. We also conducted a partial correlation
analysis to ensure that age and head motion did not drive our
prediction.

Results

The joint model best predicted theory
of mind scores

We compared the predictive performance of three models
across a wide range of hyperparameters (#components = 1–10).
As shown in Figures 2A,B, the optimal predictive performance,
as reflected by the lowest mean absolute error (MAE) and
highest correlation between the true and predicted ToM scores,
was achieved with the joint model (ISFC + FC) with the
component number equal to 2. To rule out the possibility
that the increased feature dimensionality drove the improved
predictive performance, we randomly sampled half of the FC
and ISFC edges and re-evaluated the model performance 1,000
times. Despite the slight drop in predictive performance, the
joint model using only half of the FC and ISFC features
outperformed the models using ISFC and FC separately (paired
t-test ps < 0.001). Furthermore, permutation results revealed
that the optimal joint model significantly predicted ToM scores
(mean rho = 0.34, p< 0.001), as shown in Figure 2C.

Leave-one-region out analysis
identifying key regions in the predictive
model

We averaged 100 joint models with two components and
visualized associated beta coefficients as shown in Figure 3A
and showed identified latent components in Supplementary
Figure 1. As is typical of a data-driven approach, regions with
high beta values were diffusive across the social brain, with
no single dominant anatomical pattern. To better delineate
the key ROIs that contributed to the prediction accuracy, we
conducted a leave-one-out (LOO) analysis by removing each

FIGURE 2

(A) Average mean absolute error (MAE) as a function of the number of latent components (#Comp) over 1,000 10-fold cross-validations. The
shaded area indicates one standard deviation. (B) Spearman correlation (rho) between true and predicted ToM scores. (C) Null distribution of
rho between true and predicted ToM scores with the vertical line indicating actual model performance.
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FIGURE 3

(A) Visualization of beta coefficients (β̂PLS) of the final joint model and the degree (row sum/column sum) of ISFC and FC patterns. The network
assignment was color-coded based on the definition of Alcalá-López et al. (2018). Gray: high-level processing; orange: intermediate-level
processing; purple: limbic; red: visual-sensory. (B) Key regions were identified in the final model by jointly removing FC and ISFC associated with
a region (Bonferroni corrected p < 0.05), and the nodal size is proportional to the drop in predictive accuracy. For ROI abbreviations, see
Supplementary Table 1.

ROI at a time and compared the predictive performance of
the reduced model against the full joint model. As shown in
Figure 3B, we found that excluding the anterior midcingulate
cortex (aMCC), right middle temporal gyrus (rMTG), right
TPJ (rTPJ), right anterior insula (rAI) and right supplementary
motor area (rSMA), and left inferior frontal gyrus (lIFG)
significantly lowered the predictive performance (Bonferroni
corrected p < 0.05), suggesting the significance of these regions
in our predictive model. We also conducted a follow-up LOO
analysis excluding ISFC and FC edges separately. We found
that excluding FC profiles of rMTG and lIFG as well as the
ISFC profiles of rMTG, rSMA, and ventromedial prefrontal
cortex (vMPFC) significantly lowered the model’s prediction
performance (Bonferroni corrected p< 0.05).

On FC-ISFC similarity

Given the previous evidence showing high similarity
between ISFC (excluding diagonal ISC) and intra-subject movie-
viewing FC patterns (Kim et al., 2018; Demirtaş et al., 2019),
we conducted a similar confirmation analysis by comparing the
two connectivity patterns, which revealed a moderate positive
correlation (mean rho = 0.34). Moreover, it should be noted
that the FC-ISFC similarity is modulated by the diagonal ISC

terms (for a detailed explanation, see Supplementary material),
and higher ISC translates to more adult-like brain responses
in children. We were interested in examining whether ISFC-
FC similarity had any neurobiological significance, given the
previous studies showing children with better task performance
had more adult-like brain responses (Cantlon and Li, 2013;
Cai et al., 2019). Thus, we carried out a follow-up exploratory
analysis by correlating individuals’ ISFC-FC similarity with age
and ToM abilities. We observed the similarity between ISFC and
FC to be positively correlated with age (rho = 0.550, p < 0.001),
while not correlated with ToM scores (rho = 0.12, p> 0.05).

Discussion

Previous research on the neural underpinnings of socio-
cognitive information processing has typically relied on
carefully constructed cognitive tasks and task-free paradigms
(resting-state). However, these approaches are limited in
that they have poor ecological validity. The emergence of
naturalistic fMRI paradigms offers many theoretical and
practical advantages, one of which is simultaneously examining
intra- and inter-subject connectivity, namely FC and ISFC.
However, no studies so far have examined the potential synergy
of combining these two connectivity measures and whether they
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encode complementary information. Here, using the predictive
performance as a proxy of features’ informativeness, we filled
the knowledge gap by comparing the predictive efficacy of
models using features of FC and/or ISFC to predict children’s
social-cognitive abilities measured by ToM scores. Moreover,
we also delineated key ROIs in our predictive model to better
understand regions’ contribution to individual differences in
social-cognitive abilities.

A synergy of intra- and inter-subject
functional connectivity

By comparing the predictive efficacy of FC and ISFC, our
results suggested that there may indeed be synergy between ISFC
and FC to predict individual differences. As shown in Figure 2,
the joint model using ISFC and FC not only significantly
predicted participants’ ToM scores, but far exceeded individual
models’ predictive accuracy. More importantly, the reduced
joint model, which roughly matched the dimensionality of
ISFC and FC, still outperformed individual models by a
wider margin (ps < 0.001). We speculate that the superior
performance of the model combining the connectivity measures
may indicate that distinct cognitive factors may drive these two
neural couplings. ISFC theoretically more precisely captures
the shared connectivity patterns driven by the dynamic movie
stimuli than standard task-FC (Simony et al., 2016), since the
physiological and motion artifacts were uncorrelated across
subjects. Moreover, empirical evidence has shown that the
time-varying ISFC better tracked the movie cues than the
time-varying FC (Bolton et al., 2020), and ISFC within the
DMN exhibited reliable and distinct patterns during narrative
processing (Simony et al., 2016), suggesting that ISFC may
be a more cognitively relevant representation of movie-
evoked connectivity patterns than the direct measurement of
movie-FC. On the other hand, the intra-subject FC measured
during movie viewing is a combination of task-evoked FC
and individual FC fingerprint, with the FC fingerprint being
the dominant one (Gratton et al., 2018). Thus, including
FC measures in our model provides additional information
about individuals’ FC fingerprints to facilitate the prediction.
As a previous study has shown the improved performance
of combining intra-subject FCs from multiple conditions for
predictive modeling of phenotypic measures (Gao et al., 2019),
we further demonstrated the synergy of intra- and inter-subject
FC for predicting socio-cognitive abilities using a movie-viewing
naturalistic paradigm.

To further elucidate the relationship between the two neural
coupling measures, we examined the similarity of individuals’
ISFC (i.e., excluding the diagonal ISC terms) and FC patterns,
which previous studies have focused on (Kim et al., 2018;
Lynch et al., 2018; Demirtaş et al., 2019). Consistent with
the prior work, we found that the two connectivity patterns

were positively correlated (Kim et al., 2018; Demirtaş et al.,
2019; c.f., Lynch et al., 2018). Both ISFC and FC patterns
contained some degree of movie-evoked connectivity, which
could have given rise to the overall positive ISFC-FC similarity.
We also found that FC-ISFC similarity was significantly
positively correlated with children’s age, suggesting more adult-
like social brain responses in older children, consistent with
the earlier observations (Richardson et al., 2018). Moreover,
younger children could have less stable movie-evoked FC
patterns as the underlying cognitive processes may be more
variable and individualized, while stronger and more coherent
movie-evoked FC patterns emerged in the older children,
leading to a higher FC-ISFC similarity (Cantlon and Li,
2013; Moraczewski et al., 2018). Nevertheless, we noted that
although FC-ISFC similarity was significantly correlated with
age, there was no significant correlation between FC-ISFC
and ToM scores, justifying the necessity of a more complex
predictive model.

Highly predictive nodes concentrated
in intermediate and high-level
processing subnetworks

Our LOO analysis identified a few critical ROIs that
significantly lowered the predictive accuracy in our final joint
model. The majority of these key ROIs were found to be
part of intermediate (i.e., rAI, aMCC, rSMA, and lIFG) and
high-level processing subnetworks (i.e., rTPJ and rMTG), as
defined by Alcalá-López et al. (2018). The high-level processing
subnetwork consists of key regions closely associated with ToM,
such as the TPJ, MTG, posterior cingulate cortex (PCC), and
precuneus (Schurz et al., 2014). Per Alcalá-López and colleagues,
this high-level subnetwork is more strongly connected within
itself than any other subnetworks, and is most likely to be
associated with the cognitive categories of social cognition in
all subnetworks (Alcalá-López et al., 2018). The significance
of the high-level processing network was confirmed when
examining the latent components in the final model, which
associates the connectivity profiles to ToM scores, as the second
component was weighted heavily toward ROIs within the
high-level processing subnetwork (Supplementary Figure 1).
Indeed, the behavioral task included more higher-cognitive
elements of ToM processing, such as false belief. Our LOO
analysis also identified a few nodes from an intermediate-level
subnetwork. The intermediate-level subnetwork, including the
AI, aMCC, and IFG, among others, intertwines with the lower-
level visual-sensory subnetwork that handles the preprocessed
social-affective environmental inputs (Alcalá-López et al., 2018).
AI is known for its role as a bridge between large-scale brain
networks. Together with the aMCC, these two ROIs within
the intermediate networks were involved in empathy and
pain-related processing (Kurth et al., 2010; Lamm et al., 2011)

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.875828
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-875828 August 27, 2022 Time: 15:34 # 8

Xie and Redcay 10.3389/fnins.2022.875828

and were also found among the ROIs that were highly predictive
of ToM scores. Finally, the absence of lower-level visual-sensory
ROIs among the most predictive regions suggests that although
movie stimuli induce wide-spread connectivity changes in
visual areas within and across individuals (Hasson et al., 2004;
Lynch et al., 2018), such connectivity changes may be less
socio-behaviorally relevant as compared to those in the high
association cortices.

Limitations and future directions

Several limitations require further consideration. Firstly,
we used adults as the reference group when computing ISFC.
Our choice was justified by previous studies showing children
with more variable inter-subject neural coupling and weaker
activation patterns than adults across many cortical regions
(Cantlon and Li, 2013; Moraczewski et al., 2018). Therefore,
we believe the adults may be well-suited as a reference
group given their higher homogeneity. Future investigations
could focus on the impact of choosing different reference
groups and better delineating developmental effects. A second
limitation is that we chose a set of a priori ROIs using
the social brain atlas since we are interested in predicting
individuals’ social abilities. Future studies could examine a
different parcellation, such as whole-brain parcellations (Power
et al., 2011; Craddock et al., 2012; Shen et al., 2013), given
the success of whole-brain FC predictive models (Shen et al.,
2017; Beaty et al., 2018; Lake et al., 2019; Xiao et al.,
2021). Alternatively, future studies could use atlases developed
specifically for children since the brain parcelation used in
the current study was derived from adult studies or conduct
hyperalignment for better functional alignment (Haxby et al.,
2020). Thirdly, given the limited sample size for studying
individual differences in behavior (Marek et al., 2022), our
results are subject to further validation. Future work should
use consortium-level datasets and include different movie clips.
Another potential remedy is using more advanced learning
models to improve predictive performance, such as sparse group
LASSO (Bai et al., 2020) and sparse tensor decomposition
(Zhang et al., 2021). Fourth, we only studied static FC and
ISFC, while future work could investigate whether dynamic
FC (Xie et al., 2018b) and dynamic ISFC (Bolton et al.,
2018) can be jointly studied to better characterize neural
dynamics and individual differences. Finally, the current dataset
utilized a ToM measure that was a composite of varied
ToM abilities, which may account for the varied networks
predictive of performance. While ToM is often discussed as
a unitary construct, much theoretical and empirical work
has demonstrated its multifaceted nature, including weak or
no associations between measures (Schaafsma et al., 2015;
Gernsbacher and Yergeau, 2019; Warnell and Redcay, 2019).
Thus, the regions predictive of ToM should be interpreted

within the context of this measure. Different measures may
identify distinct patterns of predictive performance.

Conclusion

The current study investigated the potential benefits
of jointly studying intra- and inter-subject connectivity,
namely, FC and ISFC, respectively, and whether the two
connectivity measures combined could enhance the prediction
of individual differences in social cognition measured by a
ToM questionnaire. Using PLS regression, we showed that the
joint connectivity (ISFC + FC) model outperformed individual
models even after matching the feature dimensionality. Our
results suggest that intra- and inter-subject connectivity
may encode unique and complementary information
about the individuals’ social abilities, and we shall make
full use of both connectivity measures to gain enriched
insight into neural processes underlying naturalistic fMRI
paradigms.
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